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Some Effects of Field Perturbation upon
Cavity-Resonance and Dispersion

Measurements on MIC
Dielectrics

P. H. LADBROOKE

Abstract—An analysis is presented of field perturbations in MIC

resonators in order to examine tbe errors which occur in permittivity

measurements made by cavity-resonance methods: Q factor, cou-

pling effects, fringing fields, crystal misalignment (for anisotropic
materials), and changes in ambient temperature are all considered.

Analysis of a cavity with mixed boundary conditions shows that the
resonant-mode frequencies depend to the first order on that part of QO
associated with imperfect electric (metal) walls, but to the second

order on that part associated with imperfect magnetic (open-circuit)
walls. Anew expression is given for the Q of an open-ended microstrip
resonator when surface waves are excited iu the dielectric, aud it is

shown that the uuloaded Q (Qo) cau be domiuated by this phen-

omenon. It is further shown that these Q-related effects, together with
reactive perturbations arising from fringing and coupling structures,
are the principal source of error iu measurements for e or t ,fr. Such

reactive effects may be treated semiquantitatively by applying
Slater’s perturbation theorem to tbe affected region. These

procedures lead to the following revised values for the crystal

permittivity of sapphire (monocrystalline A1203) in the microwave
region: s,, (parallel to the c axis) = 11.6; Cl (base-plane) = 9.4.

I. INTRODUCTION

A LTHOUGH alumina (ceramic AIZO ~) finds more

widespread application in hybrid microwave integrated

circuits than does sapphire (monocrystalline A120 ~), sap-

phire offers the following advantages (against which one
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must offset its higher cost ): i) its electrical properties are

exactly repeatable from sample to sample; ii) it can be

polished optically flat, which means that lower loss circuits

of greater precision can be constructed by thin-film

techniques; iii) it is transparent, so it is possible to align

optically a “flipped device chip for bonding directly into a

microstrip circuit without the parasitic inductance of bond

wires; iv) it is compatible with silicon epitaxial technology

(SOS). Given thesekindsofapplication, the need to measure

the dielectric properties of either substrate material at

microwave frequencies is clear.

A number of papers have been published dealing with test

structures which can be made by thin-film metallizing the

substrate itself, leading either to the permittivity e directly
[1]-[4], to an effective permittivity e.,, in the case of micro-
strips [5], or to some secondary variation such as the

temperature ‘coefficient (1/E) (&/dT) [6]. All of these test

circuits were, and still are, in the nature of cavit y resonators

with one dimension thin (<1), often with mixed boundary

conditions (i.e., some electric walls, some magnetic walls).

The object was in every case to retrieve the permittivity from

cavity-resonance measurements made upon the structure,

using the relationship [7]

‘=H+)2+(2)2) (1)
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Fig. 1. Various types of resonators fabricated on a microwave

integrated-circuit substrate.

where c is the velocity of light in vacuum ;Jn.mis the frequency

of the (n,rn)th resonant mode, and y ~and z ~are the principal

dimensions of the cavity.

From the foregoing relationship it may be seen that an

error (df/j_) injleads to an error 2(dl/j) in c. It is the aim of

this paper to enumerate the factors which disturb the

frequencies from those given by the idealized model, (1)

above, and to establish some principles of error correction

so that e can be determined to a known degree of accuracy.

The types of resonators considered are those, shown in Fig.

1, having (in general) mixed boundary conditions consisting

of imperfect electric and magnetic walls, together with at

least one coupling port and, as noted earlier, one dimension

thin, equal in fact to the thickness of the substrate itself.

II. FACTORS THAT DISTURB THE RESONANfOM

In terms of normalized field quantities, as dlefined in

Appendix A, Slater’s perturbation theorem [8], [!>]; viz.,

(2)
Wa JAT

(where subscript a refers to the ath normal mode), states that

either a change in the volume oeeupied by the cavity fields,

or a change in the vector field within a given volume, or a

combination of both, will cause the resonant frequency ~. to

shift. The theorem is of general applicability y (see Alppendix B

for a proof that the theorem applies also for perturbations to

magnetic sidewalls, not just electric walls as originally

derived by Slater [8]). For the MIC resonators under

consideration, there are four principal sources of such field

perturbation.

a) An imperfection in one or more of the resonator walls

which not only perturbs the fields locally but also admits an

energy loss is one source of perturbation. (A envity with

a) perfect rnetol

surface S

a\\E ,/’”

b) ,x ‘H, Iossy metal

/“” “ ‘\

Fig. 2. Fields at perfect versus 10SSYmetal walls. (a) Perfect conductor:
En and H, only. (b) Lossy conductor, i.e., Z~ # O; an E, appears.

lossy metal walls is an example.) For the purposes of this

paper this type of perturbation is referred to as

“QO-associated.”

b) An imperfection in one or more of the resonator walls

which perturbs the fields, but where there is no associated

energy loss that can be related to an unloaded Q factor

(QO~therefore a reactive-only effect—is another source.
(An example is the so-called “fringing” approximation for

the conditions which exist at the edge of an open-walled

resonator or at the open end of a microstripline—see Fig.

l(a) and (c).)

c) Off-axis alignment of the dielectric substrate such that

the crystal axes do not coincide with the resonator axes is a

third source.

d) A change in the ambient temperature, which causes the

resonator dimensions to change, the resistivit y of the metal-

lization to change, and the permittivity itself to change is a

fourth source of perturbation.

We consider each in turn.

A. QO-Associated Perturbations

The standard calculation for the Q of a resonator bounded

entirely by lossy metal walls has been given by Slater [8] and

by Collin [7] among others. Fig. 2 summarizes the difference

in the field systems existing at a perfect conductor and a

lossy conductor. When the surface impedance Z~, is non-

zero and the walls are “imperfect electric,” a tangential

component of E appears at the surface, given by

n x Et = ZmHt (3)

where n is a normal directed into the surface and

r
Zm=(l+j) ;. (4)

p and o are, respectively, the permeability and conductivity

of the metal. It is a well-known result that the frequency is

then modified according to the formula [7], [8]

()me=’(l)= l–~
2Q0 “

(5)
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(a)

(b)

Fig. 3. Fields at perfect and imperfect open-circuit walls (microstrip
resonator example). (a) Perfect end wall: only E, exists at the wall. (b)
Imperfect wall, i.e., lj + O; there is no longer a node of H, at the end of
the microstrip.

In order to see how these results should be extended to the

case of a resonator with one or more magnetic walls, we

consider first of all the field conditions which exist at a

perfect wall (Fig. 3(a)); n x H= Oat such a wall, i.e., there is

no tangential H component. Fig. 3(a) shows, for example,

this condition applied at the end of an open microstripline.

In practice this state of affairs never exists and the wall is

always lossy. It has been confirmed by a direct probing

technique [10] that when the strip actually terminates over

the substrate so the dielectric and the ground plane extend

beyond the end of the strip there is energy loss in the form of

launched waves; a typical experimental result is shown in

Fig. 4.2 For a wave traveling away from the end wall [11],

there arises a transverse magnetic field component given by

Ht=Y~nx E (6)

where Y; 1 = Z f,~e,P~=e/~ is the wave admittance in the
dielectric substrate (see Section III-A, where these fields are

considered in more detail). There is therefore a component

of tangential Hat the wall whose existence is due to the fact

that the wall is imperfect since it allows surface waves to be

1 The circuit (or load) is printed on a very thin dielectric leaf so that it
can be moved along the surface of the substrate proper (e.g., alumina),
passing over a probe of special design etched into the ground plane.

z The field distribution shown in Fig. 4 is plotted directly by a Hewlett-
Packard calculator which normalizes the experimental points to the
standing-wave maximum.
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Fig. 4. Probed fields showing a standing wave in a microstrip resonator
with a traveling-wave launched off the end into the substrate.

launched (Fig. 3(b) sketches these changes). Note that (6) is

of the same form as (3). We now consider the calculation of

how co is modified in a resonator with both imperfect electric

and magnetic walls, as represented, respectively, by the

boundary conditions (3) over part of the resonator surface S,

and (6) over the remainder of the resonator surface S’. The

notation follows closely that used by Slater [8] (see Appen-

dix A for a summary).

In terms of the coefficients Jv E” E. do and Jv H o H. dv

of the solenoidal field of components E. and Ha, Maxwell’s

curl equations become [8]

vxE+aB/at=o

=-~(nx E)- Ha& (7)
s

where V is the volume of the cavity.

VxH–t?B/t%=J

——
f ‘E.dv-J (nx~E ada (8)

v s,

where k. = w.@ is the propagation constant for the ath

resonant mode, and w= is the unperturbed frequency of that

mode, i.e., the frequency that results when the boundary

conditions are ideal. In place of these ideal conditions we

have on S

nxE=Zm H (3)

on S

H=~(nx E) or (nx H)=-ljE. (6)

Substituting (3) and (4) into (7),

—— J– H“Hada(l+j)
r

~. (9)
s
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Substituting (6) into (8) (with J= O throughout V), walls as represented by the surface S. Similarly, we may show

‘a~v H- Hadv– d

from the equations in Section III-A that

J E“E~dv=ljj E“E. dv.
‘z “ s,

Ijll 1

(lo) = Q.
(19)

maE

If we now assume variations as e@ where @ = co~ + jcoz and where Q,, is the unloaded Q factor due to energy lost from the

that the coefficients J” E” E. dv and J ~ H” H. dv are resonator in the form of surface waves launched off the

suitably normalized to unity, we find imperfect magnetic walls. With these Q factors, (16) becomes

and

where, in the surface impedance root term in (11), we have

recognized that o must be real (& ~J.

Combining these two equations to eliminate the first term

on the left-hand side of each then yields, after collecting

terms,

(13)

with

Equating real parts, and assuming for the present that ~, is

so small that it can be neglected as an approxinnation, we

find

If we now introduce the skin depth, 8 = ~2/w.op, we can

show that

F-

(wO Wa6

2op= 2 “
(17)

Inserting this into (16) then results in [8]

(18)

where Q. is the unloaded Q factor due to loss at the metal

which is a generalization of the well-known result,(5). (Note,
however, that the last two terms on the right-hand side are

second order, and as such they may not be the only

second-order terms when coz is included.)

The significance of (21) is that there is no jirst-order

frequency pulling due to the fields arising from an imperfect

magnetic wall of the type considered, provided that Q,, >1.

There is, however, a second-order frequency shift which is

similar to the pulling effect a lossy dielectric filling has on a

cavity. The reason why metal walls are different in this

regard is that the surface impedance (equation (4)) contains

an indoctive term, whereas the wave admittance (equation

(6)) is entirely real in our approximation:

The second difficulty is that, if we are to correct @ for the

effects of Q before inserting it into (1) for c, we have to correct
for Q, as distinct from the unloaded Q factor QO, which

ordinarily is the Q that is measured (after allowing for the

effects of the external “load):

(22)

In Section III-A it will be shown that Q., is entirely

comparable to Q, for a microstrip resonator, so the two must

somehow be separated in practical cases where Q correction

is considered important. It is clear from (21) and (1) that

errors of the order of 1 percent may arise in & if the effect is

ignored (depending upon the Q, of the mode excited), and

that an erroneously high value for c will result.

B. Perturbations Which Are Solely Reactive in Their Efect

For a stable, hard substrate material which is not subject

to mechanical deformation, there are two main sources of

reactive perturbation; local distortion of the cavit y fields at

coupling ports and at open edges (magnetic walls) where the

fields “fringe.” Their influence is less easy to quantify than

the Q-associated type, nevertheless a semiquantitative esti-
mate of their frequency-pulling effect can be obtained using

Slater’s perturbation theorem, (2).

Considering, as examples, the three resonators shown in

Fig. 1, the fact that some waveguiding structure must be

brought into close proximity to the cavity corner in Fig. l(a)

obviously will disturb the fields there. How, and to what
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TABLE I
RSLATIONSFOR(coz– &)/oj FORVARIOUS WALL DISTORTIONS

AT negative AT psitive
WW.IL TYPE (effective volune of (effectiw WIIUIK? of

resonator decreasdd) reszx.stir bxeased)

Elexstri.c f (Ha2 - Ea2) & f (Eae - Ha2) &
AT AT

Mq2etic I f (Ea2 - H=2) dv f (H=2 -
AT

Ea2) dv
AT

extent, depends upon the structure. In Fig. l(b), on the other

hand, the fields will already be perturbed by the aperture in

the sidewall, and whether this perturbation is made worse or

better clearly depends upon whether the coupling structure

‘in part reestablishes the original (metallized all-over) boun-

dary condition, or tends to draw the fields further out from

the aperture. Likewise in Fig. l(c), there is already reactance

at the line end due to fringing, and the proximity of the feed

microstrip brings about a further modification to those

fields. The principle we are trying to establish is that, once

the coupling port and the coupling structure are defined,

then that whole rigid assembly is considered for the way in

which it perturbs the resonator fields; that is, the boundaries

of the resonator are now imagined to be distorted slightly so

as to enclose this locally perturbed field, and the volume

between this and the original resonator surfaces is taken as

the volume AT in Slater’s theorem.

It is possible for the resonance frequency either to increase

or to decrease as a result of such local perturbations: it

depends firstly on whether it is an electric wall or a magnetic

wall which is affected, and secondly on whether the effective

volume of the cavity (i.e., the total volume V occupied by the

cavity fields) is increased slightly (At positive) or decreased

slightly (A7 negative). Appendix B extends Slater’s original

calculation [8] to include magnetic walls, with the results

shown in Table I.

The error that these frequency shifts lead to in c may be
found using (l). If the exact (ideal) frequency co=, when

inserted into (1), yields the exact value for the permittivity q

and if inserting the shifted value leads to a value (E + I%),

then we may write

()&–(&+&)= 1 1 ~:
& (0; cr)2

or

66 0J2 – 0): (D2—co:.
& C#= co:” (23)

Thus the fractional error in & is the negative of the values

listed in Table I.

To illustrate the use of these formulas, let us calculate the

effect of fringing upon coz and E for an open-edged waveguide

type of resonator, Fig. 1(a) (the calculation of errors due to

coupling perturbations proceeds along exactly the same

lines, and will be considered further in Section IV-B). In the

,...>,,---.,
,,’ ~,aI.. , ,,

,. . .
!’ ‘.

Fig. 5. Example of a magnetic field existing at the walls of an open-edged
MIC resonator: (1,1) mode shown. (Arrows represent magnitude and
direction of H at that point.)

Fig. 6. Schematic of the fringing field at the open side wall of an MIC
resonator.

absence of fringing, the electric field is everywhere zero

outside the resonator, while inside the resonator it is given

by

E = aX cos
mrcz mry
— Cos —

z~ Y1

(24)

where yl and ZI are the lengths of the resonator sides in the y

and z directions, respectively (Fig. 1); for the moment we

consider m # O; n # O. In the ideal case the lines of If at the

open edges loop straight out normally (Fig. 5), and close in

the space outside the resonator.

When fringing occurs the magnetic field is negligibly

different from the ideal case: the term “fringing” refers to the

tendency for the electric field to loop out of the resonator

edges, as shown in Fig. 6. We assume the fields do this by an

amount A on all sides, so that we have, to good

approximation,

mnz
along the edges y s O and y > yl: EN aX . cos —

z~

(25)

mry
along the edges z z O and z > ZI: E N aX . cos —

Y1 “

(26)

The integral in Slater’s theorem (Table I, bottom right entry)

then becomes (since His unperturbed)

= –2Ax1a (27)
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TABLE II

Wavqwle Resonators kllCK@XLp Resonators

n@o; n#o GO or n.O (per end)

where we have set z ~ = a = y ~. The normalization factor

2 ~v E2 dv [8], [9] must be calculated next:

J2~ E2dv= 2x1 ‘1
v o

x1a2
.

2“

J
Y1 mnz nrcy

COS2—COS2 — dy dz
o z~ Y1

Thus inserting

(28)

(29)

into Slater’s Theorem, there results

& (02—0):
J

E2dv=g—.—
co: ‘–AZ” a“

(30)
E—

For the case of a parallel-plate capacitor with the same

dielectric outside -the plates as inside, Plonsey and Collin

[12] give a calculation for the fringing capacitance from

which the following quantitative estimate for A (valid when

the length of the edge at which fringing is taking place is very

much greater than the plate spacing) may be obtained:

A=$ln~ =(%8x1 (31)

where we have used the typical dimensions fix an MIC

substrate of xl = 0.5 mm, a = 25 mm. When the dielectric

inside the resonator has a value e, greater than that outside,

(31) is generalized to (as an approximation)’

A= ~ln ‘a = ‘“8X1

r xl E,

so that finally, given &, N 10,

@ - 3.2x I
— = +0.64 percent

6 — c,a

(32)

(33)

independently of the mode excited. The sign of this result is

in accordance with intuitive expectation, and is contrary to a

suggestion recently put forward by Owens et al. (see Appen-

dix A of [13]). Table II contains further fringing results for

other modes and resonators.

Note that in the case of the microstrip resonator, (32)

could only be used as a very crude approximation for A.

3 This follows from the fact that the energy density inside the resonator
increases by a factor of g, when the dielectric is introduced. Therefore, the
normalized energy density in the region just outside the resonator is
reduced by the same factor. An equivalent way of accounting for this
reduction is to take A as given by (32).

897

Nevertheless it is evident that, depending upon the detailed

geometry of the cavity, fringing may lead to errors of the

order of 1 percent in a

It has been found by experiment that coupling errors, as

distinct from fringing errors, can be either positive or

negative and, depending upon the sensitivity of the appar-

atus used to detect the resonances, can be up to 4 percent in

magnitude [3]. As remarked earlier in connection with Table

I, it depends upon whether E or His disturbed as to whether

a positive or negative error results. This matter is taken up

again in Section IV-B.

C. Substrate Disorientation

Sapphire is a uniaxial crystal; it is therefore anisotropic.

(There is also evidence to show that alumina can be

anisotropic [6], [14]. ) Providing, however, that the principal

axes of the crystal are aligned with the substrate (i.e.,

resonator) axes, the permittivity tensor is diagonal with two

of the components the same, for instance,

E,, o 0

[1
[e]= o t. o (34)

oo&l

where e II refers to the permittivity parallel to the c axis; e~, to

the permittivity perpendicular to the c axis.

If the crystal axes do not coincide with the resonator axes,

the off-diagonal terms in the tensor are nonzero, and in the

specific case of the waveguide-type resonators we can show

that the propagation must convert from TE to hybrid waves

[15].

A first-order effect is the change that occurs in the tensor

component .SXX,and this has been used as a guide to the

magnitude of the changes to be expected from crystal

misorientation. It can be shown that if the permittivity

components along the principal axes (x’,y’,z’) are 8X,,eY,,and

&z,,respectively, and if the substrate (resonator) axes (x,Y,z)

are rotated out of coincidence with the crystal by an angle P

about the y’ axis and an angle u about the x’ axis, then the

tensor component along the resonator x axis becomes

Exx = 8X, COS2/? + eY,COS2a sinz P + &z,sin2 a sinz /?.

(35)

For example, for the x axis misaligned by u = /3= 2°, the

change in eX. is about 0.05 percent (2° is a typical guaranteed

orientation accuracy). Thus crystal misorientation contrib-

utes a small and insignificant error; it is worth noting,

however, that it leads to an increase in the apparent value of

c1 and a decrease in eII.

D. Changes in Ambient Temperature

It has been shown in [6] that the temperature coefficient of
resonance frequency is given by

where al and LZ2 are the expansion coefficients of the

anisotropic crystal. (Note that we have replaced Q ~ by Q, in
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‘+ Y

Fig. 7. Microstrip resonator.

the right-hand side of (36) since, as shown in Section 11-A,J

depends, to the first order, on Q,, not QO.) For various types

of resonators, including 50-fl microstrip, it was shown that

(1/~)(d~/dT) lies somewhere in the range

1 df

f dT
— = – (5.9 – 7.2)10- 5 per degree K,

Thus, if as an extreme case we imagine a 10°C difference in

ambient temperature between two sets of measurements, we

might expect an error of approximately 0.07 percent. This,

too, is too small to be of any consequence in laboratory

measurements.

In summary, it is clear from the analysis of Section,II that

the dominant sources of error are field perturbations at the

electric (metal) walls which can be described in terms of an

unloaded Q factor Q., coupling reactance, and parasitic

reactance due to fringing fields. The significance of these

findings for microstrip resonators and waveguide-type cavi-

ties is taken up in Sections III and IV below.

III. MICROSTRIP RESONATORS

A. Correction of QOfor Q.,

This kind of resonator has recently been used by Edwards

et al. [5] for dispersion measurements on microstrips on

sapphire, cuhninating in an effective permittivity parameter

eeff. The need to correct the measured frequencies for Q,

requires that Q,, be separated somehow from Q ~. To this end

we derive an expression for Q,, for the device shown in Fig. 7.

The analysis proceeds by first estimating the transmission

coefficient T which relates the power Pd carried by the

surface wave launched from the end of the resonator into the

dielectric to the power P, carried by the wave in the strip,

thus

Pd = TP~ (37)

(such a calculation has already been outlinedin[11] but a

resum6 is included here for completeness). The second part

of the analysis is to calculate Q,, according to the usual

definition

Q=2n
{

total energy stored

}
(38)

energy lost/cycle “

An expression for the power transmission coefficient T
can be derived[11] by treating the field interaction at the line

end as a wave-launching problem as done by Barlow and

Brown [16]. It may be shown that the expression given by

them applies equally to the present case, with the result that

1
J(T = 16P,P, &

E,x H~– E~x HJ. nda 2 (39)

where

n is a normal to S~,S’, directed along —z.

The fields are approximated as follows.

In the microstrip, with effective relative permittivity: ,ff,

In the dielectric, of relative permittivity s, (valid only for

tightly bound waves [11]),

Ed = aXEd.

H~ = aYH~Y + a, H~z I

–+ <y<++
i

‘<x<x’ (41)
Z<o.

The relationships between the transverse components are as

follows :

H,, = Y,n x ES, (42)

Hd, = – Ydn X Edt. (43)

(For the purpose of this calculation both waves are assumed

to be traveling toward the interaction plane [16], hence the

sign in (43) is reversed compared with (6).) Y, and Y~are the

wave admittances in the strip and the dielectric, respectively:

free spaceGf~=Y

~ = Yfree,Pace& (44)

The power carried by the strip wave is given by

P,= +x
J

E~l da (45)
s,

and that by the surface wave by

Pd = +~
f

EjX da. (46)
s,

Inserting the approximate field expressions into the trans-

mission integral, (39) then yields

‘m::{(&)’’’+(Y)’”r- ’47)
Now, for a spatial variation in field strength throughout

the resonator according to the factor

mnz
Cos —

L
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Fig. 8. Nomogram for the unloaded Q factor Q. for one end of an
open-ended microstrip resonator.

where m is the mode number, the energy stored is twice the

electric stored energy, i.e.,

The energy lost per cycle, at frequency~ to surjace waves

launched from one end of the resonator is

Pd TP, T~E&xlw

7=f= Zf
(49)

Hence from the defining relationship for Q, (38), we obtain

Q,,++

s
4

(50)

Finally, after eliminating T using (47) and noting that

ma strip _ m, ‘free spaceL=—
2 – ~ &o&ff

(51)

there results

(&r/&#2

‘s’ = 2Z “ :“ m {1 + (&eff/&,)l/2}2
(52)

per end. A nomogram derived from this expression is given in

Fig. 8. Its construction allows for the fact that, for any given

values of (w/xl) and m, (e .ff /:,) will vary with the length of

the resonator (via the frequency ), as well as with the nature
of the substrate material (alumina, sapphire, quartz, etc.).

Thus in any practical problem it is necessary to have an

estimate for (E.ff /eF) which takes account of these depen-

dence, either by reference to publishid curves [5], [17]-[20],

or by empirically deducing the wavelength in the microstrip.

Appendix C describes the use of the chart.

reso nator mlcrostrip

~“

ground

(a)

la; nched wave

(b)

Fig. 9. Field perturbations due to coupling structures. (a) End-fed
straight microstrip resonator. (b) Broadside-fed ring resonator.

The kind of end-fed resonator as used by Edwards [5]

(Fig. l(c)) would have a Q,,determined by one end (the free

end) only; energy lost from the coupling end would count as

energy transferred -to the external circuit, and hence as part

of the external Q. Thus, from the nomogram, we could

expect Q,, values upwards of 5&100, depending upon the

impedance of the line and the order of the mode. We have to

compare this with the Q, value.

A straightforward calculation using equations (18) and

(40) yields Q,= xl/6 w 250 at 1 GHz, using a typical value

for the conductivity of electrodeposited copper [21]. Judging

by the Q measured for resonators of the type shown in Fig.

l(b) [6], for which Q.= Q,, the estimate of Q,= 250 is

probably very close to the practical values, yet values of

Q. -100 only are regularly measured formicrostrip resona-

tors. The suggestion is, therefore, that Q. is determined by

Q., and that correction of e.f, (via co) for Q. would lead to a

value of e.ff N 1 percent lower, whereas the true correction

required is w – 1/250 x 100 percent = – 0.4 percent, a

figure which often may be considered negligible (Edwards

[5], for example, took no account of resonator Q). In cases

where it is thought necessary to account for Q,, Q, (propor-

tional to ~) and Q,, (proportional to co) could be separated

by data analysis of a plot of Q; lversus w- 1.4Correction for

Q, in this way would lead to E.ff values 0.5 percent lower at

low frequencies, and less than that, by the factor l/~, at

higher frequencies, which affects the detailed shape of the

dispersion curves [5].

B. Reactive-Only Perturbations

For microstrip resonators of the type shown in Fig. l(c)

there is only perturbation of the E field at either end of the

strip. We may therefore apply the results of the fringing

calculation carried out in Section II-B directly. The fringing

field at the coupling end is slightly different from that at the

free end insofar as some lines of E are drawn upwards to

terminate on the feed microstrip (see Fig. 9(a)), so that the

4 Currently the subject of experimental investigation.
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A’s will be different for each end. A figure for A at the free end

for narrow strips (where (31 ) does not strictly apply) can be

obtained from the literature [22]. For (w/xl)= 1, for

example,

A = 0.35xI.

Taking, depending upon the coupling gap width, A,= 1.2A

[23], we find from Table II (with a = L= length of

resonator)

6&
— E +3.85 percent
&

as the error arising from neglect of fringing and coupling in a

l-cm resonator on a 0.5-mm substrate. (Out of recognition

of the likely magnitude of this error, Edwards et, al. have

recently published a technique whereby the total end-effect

length represented by (A + A,) is experimentally eliminated

between two resonators, one approximately twice the length

of the other [51.)

The generality of the method as given in Section II-B,

however, extends further in that it establishes semiquanti-

tative correction procedures applicable to other

launcher/resonator configurations. One such is the ring

resonator (Fig. 9(b)), which is frequently employed in

dispersion and other measurements. In this device we may

regard the feed microstrip as launching a surface wave of the

type considered in (41) into the side of the ring. This

introduces a longitudinal Hcomponent into the microstrip-

line of which the resonant ring is comprised, while for wide

coupling gaps E is not greatly perturbsd. From Table I we

would then anticipate a small upward shift in co,whose exact

magnitude would depend upon the linewidths, ring

diameter, and so on.

IV. WAVEGUIDE-TYPE CAVITIES

Cavities of this type have been used mainly in an effort to

measure the substrate permittivit y directly [1]–[4] and, to a

lesser extent, the temperature coefficient of permittivity [6].

Both wholly (Fig. l(b)) and partially (Fig. l(a)) metallized

resonators have been investigated.

A. QO-Associated Corrections

For all-over metallization, QO (= Q,) values upwards of

250 normally are measured. For the open-edged resonators

used in [1] and [3], unloaded Q values of QO & 80 and over

have been obtained, so that, as in the microstrip resonator,

QO is dominated by Q.,, except that here Q,, arises from

energy lost by radiation into free space [24] instead of

surface waves. Provided that the radiated waves introduce

no phase shift into the fields existing at the walls S, however,

the result that there is no first-order Q,,-associated freqtiency

shift will stand. Thus, regardless of whether the waveguide-

type cavities have entirely electric walls or mixed boundary

conditions, the Q, is at least as high as that in microstrip

resonators. Thus its neglect can be expected to lead to an

error d&/& < +0.4 percent. In the experiments of [3] this is

about one order of magnitude less.than the largest error due

to coupling perturbations. We therefore consider these next.

B. Reactive-Only Perturbations

In Fig. 10 we re-present the main results from [3], which

show (in Fig. 10(b)) the experimental points averaged over

15 substrate samples. All of the modes indicated were excited

in every sample. The open data points were obtained from

transmission measurements on cavities with magnetic

sidewalls, as in Fig. 1(a) with input/output coupling at

diagonally opposite corners and the solid points from

transmission measurements on resonators of the kind

shown in Fig. l(b), but with excitation via a broad-wall hole.

In all cases the criterion for resonance was taken as the

frequency of maximum transmission. The scatter in points is

between 1 and 4 percent. We reexamine this data in the face

of the criticism raised by Owens et al. [13].

From Section IV-A it is clear that Q.-associated perturba-

tions do not account for the scatter (6&/e < +0.4 percent).

Similarly, from Section II-B it is equally clear that fringing

does not account for the scatter either (de/e N +0.64

percent, independently of mode). (It should be remarked

here that fringing is less severe than in microstrip resonators

because the fields are more tightly bound to the cavity—

there is no dielectric beyond the metallization.) We are

therefore left with coupling errors.
Fig. 10(a) shows the theoretical scatter in points obtained

by applying the methods given in Section II-B based upon

the following premises: in the closed-wall resonators the H

field at the broad wall is caused to loop by the feed line into a

volume AT. which is positive, while the electric field is

essentially undisturbed; in the open-edged resonators the

magnetic field at the corners (see Fig. 5) is largely un-

disturbed, while the Efield is drawn out from a volume A~~,

in the resonator corners, which is therefore negative. Except

for the (n,O) modes, which were explained adequately in [3],

the relative placement of the error points is semiquantita-

tively correct. In this particular set of measurements, there-

fore, where the coupling was purposely tight enough to

access all the modes with adequate sensitivity from the

Hewlett Packard 8410A/8740A network analyzer used, the

error was dominated by coupling perturbations. All other

possible sources of error (Q and fringing) were consequently

discarded in the analysis, which is the particular point of

contention raised by Owens et al. [13].

The results of Fig. 10 do, in fact, bear reexamination, but
not for these reasons. The principal assumption made in [3],

and that which could attract the greatest criticism, was that

the coupling volume AT was taken to be the same for both

open-edged and closed-edged resonators, i.e., A~= = A~~. It

is this assumption which can be challenged.

By careful comparison of (a) and (b) of Fig. 10, it can be

seen that the scatter in experimental points for closed-wall

resonators (the solid data) is slightly less than in the

corresponding theoretical points, where equal Az’s are

assumed: they would have been more comparable had a

smaller value of AT been used in predicting the upper half of



LADBROOKE : FIELD PERTURBATION AND MIC DR3LECTRICS 901

1 Sk
E“c’”~—~T

(orb units)

I.OT AA
M

k’
8■ A A

perturbation 0.5 m ■
■

Am

A AA
o

1 2 3 4 5 km

E -0.5 ~Afwafi

perturbation AOO ~
o~ A

-1.0 000°

(2,2 ) (3,2) (4,2)
( 5,2) (6,2)

(3,3) (5>)

(a)
(4,4)

~,ror& .,O
&

5
4

t---’’”

■ ‘A ■ A
3 ■

w Am

2 A
A A A

1
0

-1 1 2 3 4 ❑A $ f3427
-2
-3 ❑ A AA

-4 ❑ AA A
❑ A

-5

( 2,2) ( 3,2) (4,2) (5,2) (6,2)

(3,3) (5,3)

(b)
(4,4)
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TABLE III
.- -—

Revia&i pez-ioittivity val.uss for

wmm (crystalline A1203)

9.42(4) (FEwS plane)

11.59(3) (c - axis)

the theoretical diagram than the lower half, i.e., A~, < A~~. If

this is done it compresses all the solid points in Fig. 10(a)

down toward the horizontal (zero) axis. The last step is then

to compare the positions of the horizontal axes i]n (a) and (b)

of Fig. 10; this shows that the zero error line in Fig. 10(b) is

too low; it must be weighted upwards toward the closed-

edge data set by 0.8–1 percent. Thus the previously pub-

lished values for &[3] must be increased by circa 0.9 percent.

Applying this correction per se yields the revised values

given here in Table III.

These figures now agree more closely with those of

Fontanella et al. [25], Loewenstein et al. [261, and those

adopted by Owens et d [13]. The following error bounds

apply: 81 + 0.1 percent, – 1.6 percent; &,, + 0.2 percent,

– 1.5 percent. They include the uncertainty in the correction

procedure for coupling errors, the effects of Q, and fringing, a

+ 10”C change in temperature, and anisotropy, all as treated

explicitly in this paper, together with instrument calibration
error, an allowance for other (secondary) reactance asso-

ciated with the coupling structures, mismatches in the input

and output lines to the cavity, and, lastly, the precision of the

measurements

Finally, we make the rather obvious remark that coupling

errors can be reduced by firstly using a source/detector

system allowing a higher insertion loss, and secondly

contenting ourselves with exciting only those modes which

couple most strongly, both of which enable the coupling

volume to be decreased. Such techniques have been

employed by Lenzing [2].

V. CONCLUSIONS

An MIC resonator with mixed boundary conditions, such

as a microstrip resonator, loses energy at both imperfect

electric and magnetic walls. There is a first-order shift in the

resonant mode frequencies associated with the Q of the

imperfect electric (metal) walls alone; magnetic walls intro-

duce only a second-order shift. The latter may, however,

dominate the unloaded Q,QO.

It has been shown that the effects of Q and reactive

perturbations arising from fringing and coupling structures

are the principal sources of error in resonance measure-

ments for e, or eeff, Such reactive effects may be treated

5 It should be noted that, depending upon the criterion used to define
resonance, different measured frequencies for any particular resonant
mode will result if, firstly, reflection (or impedance) measurements are
made as opposed to transmission measurements and, secondly, where-
abouts in the feed fine the measurement plane is chosen in the case of the
reflection method. The author is grateful to one of the referees for sug-
gesting that this point should be made.
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semiquantitatively by applying Slater’s perturbation

theorem over the region where the field is perturbed. These

procedures yield the following revised values for the crystal

permittivity of sapphire (monocrystalline A120 ~) in the

microwave region; e,, (parallel to the c axis)= 11.6 (+0.2

percent, – 1.5 percent); 81 (base plane)= 9.4(+ 0.1 percent,

– 1.6 percent).

APPENDIX A

RESUME OF NOMENCLATURE [8]

Any general field E inside a cavity is assumed to be

expanded as a sum of solenoidal functions E. and irrota-

tional functions F., where a refers to the ath normal mode.

Similarly, II is assumed to be expanded in terms of solenoi-

dal functions Ha, Thus the E~s and His satisfy

where kd = co. ~ is the propagation constant associated

with the ath mode, CO=.The functions are orthogonal, and are
normalized as follows:

JH: dv =
J

E:dv=l
v v

where V is the volume of the cavity. Thus if we multiply the

following expansion by E. and integrate over V:

we obtain the coefficients e. as ~v E” E. du etc. If electric

walls are defined as surfaces S on which

nxEa=O

and magnetic walls as surfaces S’ on which

n x H.=. O

then V x E and V x H expand directly to

(VxE=~H. kaj E” E.dv+~(nx E) .H. da
a v s )

(VxH=~E. ko~ HHodv+~ (nx H). EOda
a v S )

where n is a normal directed out of v (i.e., into s,S’).

By substituting these expansions into Maxwell’s curl

equations and equating coefficients, (7) and (8) of the text are
obtained. These last two relations may be further combined

to give

–ka~(nx E)” H.da (A2)
s

which is required for the derivation in Appendix B.

axbitrary shqxd cavity of

-VOltlme v.

Fig. 11.

APPENDIX B

SLATER’S PERTURBATION THEOREM FOR A MAGNETIC WALL

(This follows closely Slater’s derivation for electric walls

[8].)

Consider a cavity with some of its walls magnetic, and

consider also part of one of these walls to be pushed-in

slightly; see Fig. 11. Since the electric field within At is now

zero, there is a discontinuity in the tangential component of

Eat the perturbed wall. This corresponds to a (fictitious)

surface current over S given by (n x E), so we must

consequently include a contribution

-Js,,(n+-w

to the right-hand side of (A2).

For small deformations, the perturbed field E will very

closely approximate the original field-which we assume to

be the ath normal mode—multiplied by its coefficient

~v E. E. dv; i.e., for the ath normal mode (or resonance)

when the boundary is perturbed

EzE~
J

E“E. dv

and hence

‘J (nx~Ha:
W

=-~ (nxEa)Hada~ EEadv
w v

.—
J( n’ E~x H=)da

J
E “ E. dv. (Bl)

w v

In order to simplify the surface integral, consider

V“(E=XH.) =H. ”(VXE.)– E= C(VX H.)

= k.(H: – E:)

by (Al). Integrating both sides and applying the divergence

theorem gives

~ V“(E. xHa)dv=k. j (H:– E~)dv
Az Ar

.—
J( E.x H.)”nda
s,+ s,,

where the minus sign on the right-hand side arises because n

is directed into AT. The surface integral maybe split into two
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parts: one over S’ and one over S. We may rewrite the integrated-circuit substrates,” IEEE Trans. Microwave Theory Tech.,

integrand as – n” (E. x ~.) = E= . (n x Ha) = O (see the
VOI. MTT-19, pp. 664-665, July 1971.

figure and the boundary conditions for S’ stated in Appendix
[2] H. F. Lenzing, “Measurement of dielectric constant of ceramic sub-

strates at microwave frequencies: Amer. Ceram. Sot. Bull., vol.51, p.

A), so we are left with 361, 1972.
,, [3] P. H. Ladbrooke, M. H. N. Potok, and E. H. England, “Coupling

—~ n “ (E. x Ha) da = k= ~ (H: – El) du. (B2) errors in cavity-resonancemeasurementson MIC dielectrics,” IEEE

s,, Ax
Trans. Microwaue Theory Tech. (Short Paper), vol. MTT-21, pp.
56W562, Aug. 1973.

We now substitute (B2) into (Bl) and add this term into [4] J. Q. Howel~ “A quick accurate technique to measure the dielectric

the right-hand side of (A2) under the assumpticms:
constant of microwave integrated-circuit substrates.” IEEE Trans.

i) all other terms on the right-hand side of (A2) are zero; [5]
ii) Jv E” E. do = coefficient of E., varies as eja’:; co = real.

This gives [6]

or, since k: = co~pe where co. is the frequency of the ath
[7]

(unperturbed) normal mode, [8]

(B3) ‘9]
co; JAT [10]

for, recal~ a decrease in volume AT.

The right-hand side is of opposite sign to that which ’11]

results when an electric sidewall is pushed in [8]. That this is

correct may be checked against the expectation that, in [12]

either cavity type, co should decrease for a small increase in [13]
resonator dimensions (refer to Table I of the text).

APPENDIX C

USE OF THE NOMOGRAM (FIG. 8) [14]

Microwaue Theory Tech. (S~ort Paper), vol. MTT-21, pp. 142-143,
Mar. 1973.
T. C. Edwards and R. P. Owens, “2 to 18 GHz dispersion measure-
ments on 10 to 100 ohm microstriplines on sapphire,” IEEE Trans.
Microwave Theory Tech., vol. MTT-24, pp. 506-513, Aug. 1976.
J. E. Aitken, P. H. Ladbrooke, and M. H. N. Potok, “Microwave
measurement of the temperature coefficient of permittivity for sap-
phire and alumina; IEEE Trans. Microwaue Theory Tech. (Short
Paper), vol. MTT-23, pp. 526529, June 1975.
R. E. Collin, Foundations for Microwave Engineering. New York:
McGraw-Hill, 1966.
J. C. Slater, Microwave Electronics. Princeton, NJ: Van Nostrand,
1950.
E. L. Ginzton, Microwaue Measurements. New York: McGraw-Hill,
1957.
P. H. Ladbrooke, “A novel standing-wave indicator in microstrip~
Radio and Electronic Engr., vol. 44, pp. 273-280, May 1974.
J. R. James and P. H. Ladbrooke, “Surface-wave phenomena asso-
ciated with open-circuited stripline terminations,” Electronics Let-

ters, vol. 9, pp. 570-571, Nov. 1973.
R. Plonsey and R. E. Colfin, Principles and Applications of Electro-

magnetic Fields. New York: McGraw-HiIl, 1961.
R. P. Owens, J. E. Aitken, and T. C. Edwards, “Quasi-static charac-
teristics of microstrip on an anisotropic sapphire substrate,” IEEE
Trans. Microwave Theory Tech., vol. MTT-24, pp. 499-505, Aug.
1976.
J. H. C. van Heuven and T. H. A. M. Wek, “Anisotropy in alumina
substrates for microstrip circuits,” IEEE Trans. Microwave Theory
Tech. (Short PaDerk vol. MTT-20. DD. 775-777. Nov. 1972.i) Determine an approximate value for (e .ff/er) at the

particular (w/xl ) and frequency of interest. Example:
[15] Y. Satomura, M: Matsuhara, and “N.”Kumagai,”’’Analysis of electro-

magnetic-wave modes in anisotropic slab waveguide,” IEEE Trans.

&eff = 6.8 E, = 9.8 w/x~ = 1.
Microwaue Theory Tech., vol. MTT-22, pp. 8692, Feb. 1974.

[16] H. M. Barlow and J. Brown, Radio Surjace Waves. Oxford, England:

ii) Draw a line (—” —” —--) connecting the
Clarendon Press,1962.

(8.,, /8,) value on the left-hand scales with the (w/x ,)value on
[17] E. Denlinger, “A frequencydependent solution for microstrip trans-

mission lines,” IEEE Trans. Microwave Theory Tech., vol. MTT-19,

the right-hand scales. Let this line intersect the “pivot line” pp. 30-39, Jan. 1971.

at point O.
[18] W. J. Getsinger,“Microstrip dispersion model: IEEE Trans. Micro-

wave Theory Tech., vol. MTT-21, pp. 3439, Jan. 1973.
iii) Draw a line (– – – – –) Connecting pOint O with the [19] K. Mehmet, M. K. McPhun, and D. F. Michie, “Simple resonator

mode number m on the right-hapd scales, and extrapolate to method for measuring dispersion of microstrip,” Electronics Letters,

cut the Q,, axis. Example:
vol. 8, pp. 165–166,Mar. 23, 1972.

[20] J. Deutsch and H. J. Jung, “Measurement of the attenuation and

m = 5 giving Q., = 576
effective dielectric constant of microstriplines in the frequency range

per end, or 288 if there is loss from both ends of the resonator. [211
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