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Some Effects of Field Perturbation upon
Cavity-Resonance and Dispersion
Measurements on MIC
Dielectrics

P. H . LADBROOKE

Abstract—An analysis is presented of field perturbations in MIC
resonators in order to examine the errors which occur in permittivity
measurements made by cavity-resonance methods: Q factor, cou-
pling effects, fringing fields, crystal misalignment (for anisotropic
materials), and changes in ambient temperature are all considered.
Analysis of a cavity with mixed boundary conditions shows that the
resonant-mode frequencies depend to the first order on that part of Q,
associated with imperfect electric (metal) walls, but to the second
order on that part associated with imperfect magnetic (open-circuit)
walls. A new expression is given for the Q of an open-ended microstrip
resonator when surface waves are excited in the dielectric, and it is
shown that the unloaded Q (Q,) can be dominated by this phen-
omenon, It is further shown that these Q-related effects, together with
reactive perturbations arising from fringing and coupling structures,
are the principal source of error in measurements for ¢ or ¢.;. Such
reactive effects may be treated semiquantitatively by applying
Slater’s perturbation theorem to the affected region. These
procedures lead to the following revised values for the crystal
permittivity of sapphire (monocrystalline Al,O5) in the microwave
region: ¢ (parallel to the ¢ axis) = 11.6; ¢, (base-plane) = 9.4.

I. INTRODUCTION

LTHOUGH alumina (ceramic Al,O;) finds more
Awidespread application in hybrid microwave integrated
circuits than does sapphire (monocrystalline Al,O ), sap-
phire offers the following advantages (against which one

Manuscript received February 17, 1976; revised December 3, 197§.
The author is with the Department of Solid State Electronics, Univer-
sity of New South Wales, Kensington, Australia 2033.

must offset its higher cost): i) its electrical properties are
exactly repeatable from sample to sample; ii) it can be
polished optically flat, which means that lower loss circuits
of greater precision can be constructed by thin-film
techniques; iii) it is transparent, so it is possible to align
optically a “flipped” device chip for bonding directly into a
microstrip circuit without the parasitic inductance of bond
wires; iv) it is compatible with silicon epitaxial technology
(SOS). Given these kinds of application, the need to measure
the dielectric properties of either substrate material at
microwave frequencies is clear.

A number of papers have been published dealing with test
structures which can be made by thin-film metallizing the
substrate itself, leading either to the permittivity ¢ directly
[1]-[4], to an effective permittivity € in the case of micro-
strips [5], or to some secondary variation such as the
temperature ‘coefficient (1/¢)(0e/0T) [6]. All of these test
circuits were, and still are, in the nature of cavity resonators
with one dimension thin (<A), often with mixed boundary
conditions (i.e., some electric walls, some magnetic walls).
The object was in every case to retrieve the permittivity from
cavity-resonance measurements made upon the structure,
using the relationship [7]

I A LA
g_ﬁ 2y, 2z,

1)



LADBROOKE: FIELD PERTURBATION AND MIC DIELECTRICS

a)
broad faces metaliized

coupling into

magnetic {(uncoated)
open corner » - g

sidewalls

b)

electric (coated)
“3idewalls

c)

d)

Fig. 1. Various types of resonators fabricated on a microwave

integrated-circuit substrate.

where ¢ is the velocity of light in vacuum; £, is the frequency
of the (n,m)th resonant mode, and y, and z, are the principal
dimensions of the cavity. :
From the foregoing relationship it may be seen that an
error (df/f) in fleads to an error 2(df/f) in ¢. It is the aim of
this paper to enumerate the factors which disturb the
frequencies from those given by the idealized model, (1)
above, and to establish some principles of error correction
so that ¢ can be determined to a known degree of accuracy.
The types of resonators considered are those, shown in Fig.
1, having (in general) mixed boundary conditions consisting
of imperfect electric and magnetic walls, together with at
least one coupling port and, as noted earlier, one dimension
thin, equal in fact to the thickness of the substrate itself.

II. FACTORS THAT DISTURB THE RESONANCES

In terms of normalized field quantities, as defined in
Appendix A, Slater’s perturbation theorem [8], [9]; viz.,

)

(where subscript a refers to the ath normal mode), states that
either a change in the volume occupied by the cavity fields,
or a change in the vector ficld within a given volume, or a
combination of both, will cause the resonant frequency @, to
shift. The theorem is of general applicability (see Appendix B
for a proof that the theorem applies also for perturbations to
magnetic sidewalls, not just electric walls as originally
derived by Slater [8]). For the MIC resonators under
consideration, there are four principal sources of such field
perturbation.

a) An imperfection in one or more of the resonator walls
which not only perturbs the fields locally but also admits an
energy loss is one source of perturbation. (A cavity with

22
Lzﬂ=j (E2 — H?) dv

W, At
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perfect metal

surface S

b) lossy metal

Fig. 2. Ficlds at perfect versus lossy metal walls. (a) Perfect conductor:
E, and H, only. (b) Lossy conductor, ie., Z,, # 0; an E, appears:

lossy metal walls is an example.) For the purposes of this
paper this type of perturbation is referred to as
“Qo-associated.”

b) An imperfection in one or more of the resonator walls
which perturbs the fields, but where there is no associated
energy loss that can be related to an unloaded Q. factor
(Qo)—therefore a reactive-only effect—is another source.
(An example is the so-called “fringing” approximation for
the conditions which exist at the edge of an open-walled
resonator or at the open end of a microstripline—see Fig.
1(a) and (c).) .

c¢) Off-axis alignment of the dielectric substrate such that
the crystal axes do not coincide with the resonator axes is a
third source.

d) A change in the ambient temperature, which causes the

‘resonator dimensions to change, the resistivity of the metal-

lization to change, and the permittivity itself to change is a
fourth source of perturbation.
We consider each in turn.

A. Qo-Associated Perturbations

Thestandard calculation for the Q of a resonator bounded
entirely by lossy metal walls has been given by Slater [8] and
by Collin [7] among others. Fig. 2 summarizes the difference
in the field systems existing at a perfect conductor and a
lossy conductor. When the surface impedance Z,, is non-
zero and the walls are “imperfect electric,” a tangential
component of E appears at the surface, given by

nx E,=7,H,
where n is a normal directed into the surface and

Zm=(1+j)\/%. | 4)

u and o are, respectively, the permeability and conductivity
of the metal. It is a well-known result that the frequency is
then modified according to the formula [7], [8]

1
w'zwa(l—TQo).

(3)

(5)
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Fig. 3. Fields at perfect and imperfect open-circuit walls (microstrip
resonator example). (a) Perfect end wall: only E, exists at the wall. (b)
Imperfect wall, i.e., ¥, # 0; there is no longer a node of H, at the end of
the microstrip.

In order to see how these results should be extended to the
case of a resonator with one or more magnetic walls, we
consider first of all the field conditions which exist at a
perfect wall (Fig. 3(a)); # x H = 0 atsuchawall,ie., thereis
no tangential H component. Fig. 3(a) shows, for example,
this condition applied at the end of an open microstripline.
In practice this state of affairs never exists and the wall is
always lossy. It has been confirmed by a direct probing
technique’ [10] that when the strip actually terminates over
the substrate so the dielectric and the ground plane extend
beyond the end of the strip there is energy loss in the form of
launched waves; a typical experimental result is shown in
Fig. 4.2 For a wave traveling away from the end wall [11],
there arises a transverse magnetic field component given by

H,=Y;nx E 6)

where Y; ' = Z¢ .. space /\/5 is the wave admittance in the
dielectric substrate (see Section III-A, where these fields are
considered in more detail). There is therefore a component
of tangential H at the wall whose existence is due to the fact
that the wall is imperfect since it allows surface waves to be

! The circuit (or load) is printed on a very thin dielectric leaf so that it
can be moved along the surface of the substrate proper (e.g., alumina),
passing over a probe of special design etched into the ground plane.

2 The field distribution shown in Fig. 4 is plotted directly by a Hewlett-
Packard calculator which normalizes the experimental points to the
standing-wave maximum.
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Fig. 4. Probed fields showing a standing wave in a microstrip resonator
with a traveling-wave launched off the end into the substrate.

launched (Fig. 3(b) sketches these changes). Note that (6) is
of the same form as (3). We now consider the calculation of
how  is modified in a resonator with both imperfect electric
and magnetic walls, as represented, respectively, by the
boundary conditions (3) over part of the resonator surface S,
and (6) over the remainder of the resonator surface §’. The
notation follows closely that used by Slater [8] (see Appen-
dix A for a summary).

In terms of the coefficients |, £ E, dvand |, H- H, dv
of the solenoidal field of components E, and H,, Maxwell’s
curl equations become [8]

V x E+ 0B/ot =0
d
k,,fVE.EadquugifVH.Hadv

= —j (nx E)- H,da (7)
S
where V is the volume of the cavity.
Vx H—-0Bjot=J

k,,jVH-H,,dv—sifVE-Eadu

zf J-Eadv_f (nx H)- E,da (8)

where k, = wa\/ﬁ is the propagation constant for the ath
resonant mode, and w,is the unperturbed frequency of that
mode, i.e., the frequency that results when the boundary
conditions are ideal. In place of these ideal conditions we
have on §

nx E=Z,H 3)
on §’
H=YnxE) or (nx Hy= —-Y,E. (6)
Substituting (3) and (4) into (7),
d
k, JVE. E,,du-{—uajyy- H, dv
- H- A R
- js H-H,da(l+)) [5=. ©)
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Substituting (6) into (8) (with J= 0 throughout V),

k[HHdv—s%j EEdu_YdjE E, dv.
) (10)

If we now assume variations as ¢/ where w = w, + jw,and
that the coefficients |, E- E,dv and |, H- H,dv are
suitably normalized to unity, we find

E-E, dv
e .
“\, H-H,do /¥
_|sH H,d da
jVH H, dv +9) (11)
and
H-H, dv {s E- E, da
k, fyH-Hydo . [sE E,da
L EEd "N, EEw 1Y
where, in the surface impedance root term in (11), we have

recognized that w must be real (~w,).

Combining these two equations to eliminate the first term
on the left-hand side of each then yields, after collecting
terms, '

‘wfﬂﬁ=:[ wzu+Afv][-w28+ Y, B]
cuifuren )
+j”w1u+A\/—][ w2& + ¥, B]
ol 2]

(13)

with
_jsH'Ha da
A_jVH-H,,dv (14)
_js/ E- Ea da
B_jVE~E,,du' (15)

Equating real parts, and assuming for the present that w, is
so small that it can be neglected as an approximation, we

find
Y,;B
2 2 _ A. a A Dy e ~0. 1
wy + Wy w4 20’“ \/;M e 0 ( 6)

If we now introduce the skin depth, & = /2/w,op, we can
show that

W, _ a),,é. (17)

20u 2

Inserting this into (16) then results in [8]
5A=éjsH~Hada=i (18)
2 T2(,H H,dv 0,

where Q, is the unloaded Q factor due to loss at the metal
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walls as represented by the surface S. Similarly, we may show
from the equations in Section III-A that

LB _ 1
0. (19)

where Q. is the unloaded Q factor due to energy lost from the
resonator in the form of surface waves launched off the
imperfect magnetic walls. With these Q factors, (16) becomes

W,E

1
-0 —w, t+w?|l+ ~0 20
! Qs ( QSQS,) (20)
with the solution
1 1 1
O>mw >l — 1- - — 21
! : 20, [ Qs Qs“ @

which is a generalization of the well-known result, (5). (Note,
however, that the last two terms on the right-hand side are
second order, and as such they may not be the only
second-order terms when w, is included.)

The significance of (21) is that there is no first-order
frequency pulling due to the fields arising from an imperfect
magnetic wall of the type considered, provided that @, > 1.
There is, however, a second-order frequency shift which is
similar to the pulling effect a lossy dielectric filling hason a
cavity. The reason why metal walls are different in this
regard is that the surface impedance (equation (4)) contains
an indactive term, whereas the wave admittance (equation
(6)) is entirely real in our approximation:

The second difficulty is that, if we are to correct w for the
effects of Q before inserting it into (1) for ¢, we have to correct
for Q, as distinct from the unloaded Q factor Q,, which
ordinarily is the Q that is measured (after allowing for the
effects of the external “load”):

1 1 4 1
QO Qs Qs' ’
In Section III-A it will be shown that @, is entirely
comparable to @ for a microstrip resonator, so the two must
somehow be separated in practical cases where Q correction
is considered important. It is clear from (21) and (1) that
errors of the order of 1 percent may arise in ¢ if the effect is

ignored (depending upon the Q, of the mode excited), and
that an erroneously high value for & will result.

(22)

B. Perturbations Which Are Solely Reactive in Their Effect

For a stable, hard substrate material which is not subject
to mechanical deformation, there are two main sources of
reactive perturbation: local distortion of the cavity fields at
coupling ports and at open edges (magnetic walls) where the
fields “fringe.” Their influence is less easy to quantify than
the Q-associated type, nevertheless a semiquantitative esti-
mate of their frequency-pulling effect can be obtained using
Slater’s perturbation theorem, (2).

Considering, as examples, the three resonators shown in
Fig. 1, the fact that some waveguiding structure must be
brought into close proximity to the cavity corner in Fig. 1(a)
obviously will disturb the fields there. How, and to what
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TABLE 1
RELATIONS FOR (w? — w?)/w? FOR VARIOUS WALL DISTORTIONS

AT negative AT positive
WALL TYPE (effective volume of (effective volune of
resonator decreased) resonator increased)
. 2 2 2 2
Electric A{- (Ha - Ea ) av Ai‘ (Ea -Hy ) dv
. 2 2 2 2
Magnetic A{ (Ea - Ha ) av A{ (Ha E ) dv

extent, depends upon the structure. In Fig. 1(b), on the other
hand, the fields will aiready be perturbed by the aperture in
the sidewall, and whether this perturbation is made worse or
better clearly depends upon whether the coupling structure
'in part reestablishes the original (metallized all-over) boun-
dary condition, or tends to draw the fields further out from
the aperture. Likewise in Fig. 1(c), there is already reactance
at the line end due to fringing, and the proximity of the feed
microstrip brings about a further modification to those
fields. The principle we are trying to establish is that, once

the coupling port and the coupling structure are defined, '

then that whole rigid assembly is considered for the way in
which it perturbs the resonator fields; that is, the boundaries
of the resonator are now imagined to be distorted slightly so
as to enclose this locally perturbed field, and the volume
between this and the original resonator surfaces is taken as
the volume Az in Slater’s theorem.

It is possible for the resonance frequency either to increase
or to decrease as a result of such local perturbations: it
depends firstly on whether it is an electric wall or a magnetic
wall which is affected, and secondly on whether the effective
volume of the cavity (i.e., the total volume V occupied by thé
cavity fields) is increased slightly (At positive) or decreased
slightly (At negative). Appendix B extends Slater’s original
calculation [8] to include magnetic walls, with the results
shown in Table L.

The error that these frequency shifts lead to in ¢ may be
found using (1). If the exact (ideal) frequency w,, when
inserted into (1), yields the exact value for the permittivity ,
and if inserting the shifted value leads to a value (¢ + J¢),
then we may write

e—(8+68)=(1 1) 3

& w? o]

or
e wr—w: o

& 0 T w?

(23)

Thus the fractional error in ¢ is the negative of the values
listed in Table 1.

To illustrate the use of these formulas, let us calculate the
effect of fringing upon w? and ¢ for an open-edged waveguide
type of resonator, Fig. 1(a) (the calculation of errors due to
coupling perturbations proceeds along exactly the same
lines, and will be considered further in Section IV-B). In the

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-25, NO. 11, NOVEMBER 1977

. iw;ﬂ;u" ;

tfftttff ]
AR ENREAS

7
‘

IHHTH.\

Fig. 5. Example of a magnetic field existing at the walls of an open-edged
MIC resonator: (1,1) mode shown. (Arrows represent magnitude and
direction of H at that point.)

Fig. 6. Schematic of the fringing field at the open side wall of an MIC
resonator.

absence of fringing, the electric field is everywhere zero
outside the resonator, while inside the resonator it is given
by

mnz  nmy

E=a, cos —cos —

24
21 Y1 ( )

where y, and z, are the lengths of the resonator sides in the y
and z directions, respectively (Fig. 1); for the moment we
consider m # 0; n £ 0. In the ideal case the lines of H at the
open edges loop straight out normally (Fig. 5), and close in
the space outside the resonator.

When fringing occurs the magnetic field is negligibly
different from the ideal case: the term “fringing” refers to the
tendency for the electric field to loop out of the resonator
edges, as shown in Fig. 6. We assume the fields do this by an
amount A on all sides, so that we have, to good
approximation,

along the edges y S0 and y 2 y,: E~a, - cos gﬁ
1
(25)
along the edges z <0 and zz2z;: E~a, - cos nTn)_/
1
(26)

The integral in Slater’s theorem (Table I, bottom right entry)
then becomes (since H is unperturbed)

Z1 Y1
—f E? dv = —2Ax, U c0s? gz + [ cos? @dy}
A 0 Z 0 M

= —2Ax,a (27)
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TABLE II

Waveguide Rescnators Microstrip Resonators

mE0; n#0 =0 or n=0 (per end)
s u)2 - W, 2
€ . . a 48 34 A
G 2 3 iy *E

where we have set z; = a = y;. The normalization factor
2 fy E? dv [8], [9] must be calculated next:

e mnz nmy
2| E?2dv=2x cos? —=cos? —Ldy dz
jV ! J‘0 Jo 2 341 Y
2
_Xxa
== (28)
Thus inserting
E* dv
B2 gy = Ju B o 29
JA, a 4V 2 [y E* dv ()
into Slater’s Theorem, there results
2 — w? 4A
%y P, [ R =" (0)

é (L At

For the case of a parallel-plate capacitor with the same
dielectric -outside the plates as inside, Plonsey and Collin
[12] give a calculation for the fringing capacitance from
which the following quantitative estimate for A (valid when
the length of the edge at which fringing is taking place is very
much greater than the plate spacing) may be obtained: \

na

A=211n™ _o8x,

2 x, (31)

where we have used the typical dimensions for an MIC
substrate of x; = 0.5 mm, a = 25 mm. When the dielectric
inside the resonator has a value ¢, greater than that outside,
(31) is generalized to (as an approximation)?

An Xt me 08 (32)
2ne, X4 &,
so that finally, given ¢, ~ 10,
% 324 _ 1064 percent (33)
€ &,a

independently of the mode excited. The sign of this result is
in accordance with intuitive expectation, and is contrary toa
suggestion recently put forward by Owens et al. (see Appen-
dix A of [13]). Table II contains further fringing results for
other modes and resonators.

Note that in the case of the microstrip resonator, (32)
could only be used as a very crude approximation for A.

3 This follows from the fact that the energy density inside the resonator
increases by a factor of ¢, when the dielectric is introduced. Therefore, the
normalized energy density in the region just outside the resonator is
reduced by the same factor. An equivalent way of accounting for this
reduction is to take A as given by (32).
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Nevertheless it is evident that, depending upon the detailed
geometry of the cavity, fringing may lead to errors of the
order of 1 percent in .

It has been found by experiment that coupling errors, as
distinct from fringing errors, can be either positive or
negative and, depending upon the sensitivity of the appar-
atus used to detect the resonances, can be up to 4 percent in
magnitude [3]. As remarked earlier in connection with Table
I, it depends upon whether E or His disturbed as to whether
a positive or negative error results. This matter is taken up
again in Section IV-B.

C. Substrate Misorientation

Sapphire is a uniaxial crystal; it is therefore anisotropic.
(There is also evidence to show that alumina can be
anisotropic [6], [ 14].) Providing, however, that the principal
axes of the crystal are aligned with the substrate (ie.,
resonator) axes, the permittivity tensor is diagonal with two
of the components the same, for instance,

egg 0 0
[e] = [0 & 0]

0 0 ¢

(34)

where ¢ refers to the permittivity parallel to the c axis; e, to
the permittivity perpendicular to the ¢ axis.

If the crystal axes do not coincide with the resonator axes,
the off-diagonal terms in the tensor are nonzero, and in the
specific case of the waveguide-type resonators we can show
that the propagation must convert from TE to hybrid waves
[15].

A first-order effect is the change that occurs in the tensor
component ¢, and this has been used as a guide to the
magnitude of the changes to be expected from crystal
misorientation. It can be shown that if the permittivity
components along the principal axes (x',’,z') are &, &,,and
¢,,, respectively, and if the substrate (resonator) axes (x,y,z)
are rotated out of coincidence with the crystal by an angle
about the y’ axis and an angle « about the x’ axis, then the

tensor component along the resonator x axis becomes
£y = Ex OS2 B + g, cos® a sin? B + ¢, sin® « sin? B.
(35)

For example, for the x axis misaligned by « = f = 2°, the
change in ¢, is about 0.05 percent (2° is a typical guaranteed

- orientation accuracy). Thus crystal misorientation contrib-

utes a small and insignificant error; it is worth noting,
however, that it leads to an increase in the apparent value of
¢, and a decrease in ¢ ).

D. Changes in Ambient Temperature

It has been shown in [6] that the temperature coefficient of
resonance frequency is given by

1 df 11%4_ +
f g oT %1%

where «; and o, are the expansion coefficients of the
anisotropic crystal. (Note that we have replaced Q, by Q. in

1 dg,
T30z ar

fdr 2

(36)
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Fig. 7. Microstrip resonator.

the right-hand side of (36) since, as shown in Section II-A, f
depends, to the first order, on Q,, not Q,.) For various types
of resonators, including 50-Q microstrip, it was shown that
(1/f)df/dT) lies somewhere in the range

1 df _s
Far- (5.9 — 7.2)107 > per degree K.

Thus, if as an extreme case we imagine a 10°C difference in
ambient temperature between two sets of measurements, we
might expect an error of approximately 0.07 percent. This,
too, is too small to be of any consequence in laboratory
measurements.

In summary, it is clear from the analysis of Section II that
the dominant sources of error are field perturbations at the
electric (metal) walls which can be described in terms of an
unloaded Q factor Q,, coupling reactance, and parasitic
reactance due to fringing fields. The significance of these
findings for microstrip resonators and waveguide-type cavi-
ties is taken up in Sections III and TV below.

II1. MICROSTRIP RESONATORS

A. Correction of Q, for Q,,

This kind of resonator has recently been used by Edwards
et al. [5] for dispersion measurements on microstrips on
sapphire, culminating in an effective permittivity parameter
g The need to correct the measured frequencies for Q.
requires that @, be separated somehow from Q. To thisend
we derive an expression for Q. for the device shown in Fig. 7.
The analysis proceeds by first estimating the transmission
cocfficient T which relates the power P, carried by the
surface wave launched from the end of the resonator into the
dielectric to the power P, carried by the wave in the strip,
thus ‘

P,= TP, (37)

(such a calculation has already been outlined in [11] but a
resumé is included here for completeness). The second part
of the analysis is to calculate Q, according to the usual
definition

total energy stored
energy lost/cycle |

Q=2n (38)
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An expression for the power transmission coefficient T
can bederived [11] by treating the field interaction at the line
end as a wave-launching problem as done by Barlow and
Brown [16]. It may be shown that the expression given by
them applies equally to the present case, with the result that

2

. (39)

T=16p.P,

f (E;x Hy— E; x H) - nda
S5

where
n is a normal to S,.S’, directed along —z.

The fields are approximated as follows.
In the microstrip, with effective relative permittivity ¢,

Es = a, Esx

H,= —aH, (40)

<y <4 0<x<xy
; =¥Y=737 lo<z<L

In the dielectric, of relative permittivity ¢, (valid only for
tightly bound waves [11]),

Ed= axde
Hd = adey + aszz
V1 Y1 0<x<x;
—= - 41
2 <Y<, :z <0 (41)

The relationships between the transverse components are as
follows:

H,=YnxE,
Hy = —Y,n x E,.

(42)
(43)

(For the purpose of this calculation both waves are assumed
to be traveling toward the interaction plane [16], hence the
sign in (43) is reversed compared with (6).) Y, and Y, are the
wave admittances in the strip and the dielectric, respectively:

Ys = Yfree space\/ seff

Yd = Yfree space\/;r' (44)
The power carried by the strip wave is given by
P,=3Y,[ Elda (43)
. S
and that by the surface wave by
P,=3Y, | Ei da (46)
S

Inserting the approximate field expressions into the trans-
mission integral, (39) then yields

el e T
4y, \eese &

Now, for a spatial variation in field strength throughout
the resonator according to the factor

(47)

mnz
COS ——
L
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Fig. 8. Nomogram for the unloaded Q factor Q, for one end of an
open-ended microstrip resonator.

where m is the mode number, the energy stored is twice the
electric stored energy, ie.,

w/2 L

(48)

The energy lost per cycle, at frequency f, to surface waves

launched from one end of the resonator is
P, TP, TY,EZ x,w

o f /A

Hence from the defining relationship for Q, (38), we obtain

(49)

_f &t

Qs’_ T Ys

L (50)

\
Finally, after eliminating T using (47) and noting that

mi., mY
L= strip _ T 7 free space (51)
2 2 o~/ Eett S
there results ‘
1/2
y 27Z . _y_l m (Er/geff) (52)

w {1+ (ece/er) %)

per end. A nomogram derived from this expression is given in
Fig. 8. Its construction allows for the fact that, for any given
values of (w/x,) and m, (e /¢,) will vary with the length of
the resonator (via the frequencyf'), as well as with the nature
of the substrate material (alumina, sapphire, quartz, etc.).
Thus in any practical problem it is necessary to have an
estimate for (¢./¢,) which takes account of these depen-
dences, either by reference to published curves [5],[17]-{20],
or by empirically deducing the wavelength in the microstrip.
Appendix C describes the use of the chart.

resonator microstrip

launched wave

(b)

Fig. 9. Field perturbations due to coupling structures. (a) End-fed
straight microstrip resonator. (b) Broadside-fed ring resonator.

The kind of end-fed resonator as used by Edwards [5]
(Fig. 1(c)) would have a Q,, determined by one end (the free
end) only; energy lost from the coupling end would count as
energy transferred to the external circuit, and hence as part
of the external Q. Thus, from the nomogram, we could
expect Q, values upwards of 50-100, depending upon the
impedance of the line and the order of the mode. We have to
compare this with the Q, value.

A straightforward calculation using equations (18) and
(40) yields Q; ~ x, /6 ~ 250 at 1 GHz, using a typical value
for the conductivity of electrodeposited copper [21]. Judging
by the Q measured for resonators of the type shown in Fig.
1(b) [6], for which Q, = Q,, the estimate of Q = 250 is
probably very close to the practical values, yet values of
0, ~ 100 only are regularly measured for microstrip resona-
tors. The suggestion is, therefore, that Q is determined by
Q. and that correction of & (via w) for Q, would lead to a
value of ¢ ~ 1 percent lower, whereas the true correction
required is ~ —1/250 x 100 percent = —0.4 percent, a
figure which often may be considered negligible (Edwards
[5), for example, took no account of resonator Q). In cases
where it is thought necessary to account for Q,, Q, (propor-
tionalto \/5) and Q,, (proportional to ) could be separated
by data analysis of a plot of @, !versus ™ *.* Correction for
Q, in this way would lead to & values 0.5 percent lower at
low frequencies, and less than that, by the factor l/ﬁ, at
higher frequencies, which affects the detailed shape of the
dispersion curves [5].

B. Reactive-Only Perturbations

For microstrip resonators of the type shown in Fig. 1(c)
there is only perturbation of the F field at either end of the
strip. We may therefore apply the results of the fringing
calculation carried out in Section II-B directly. The fringing
field at the coupling end is slightly different from that at the
free end insofar as some lines of E are drawn upwards to
terminate on the feed microstrip (see Fig. 9(a)), so that the

4 Currently the subject of experimental investigation.
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A’s will be different for each end. A figure for A at the free end
for narrow strips (where (31) does not strictly apply) can be
obtained from the literature [22]. For (w/x;)=1, for
example,

A = 0.35x,.

Taking, depending upon the coupling gap width, A, >~ 1.2A
[23], we find from Table II (with a= L =length of
resonator)

% ~ +3.85 percent

as the error arising from neglect of fringing and coupling in a
1-cm resonator on a 0.5-mm substrate. (Out of recognition
of the likely magnitude of this error, Edwards et al. have
recently published a technique whereby the total end-effect
length represented by (A + A,) is experimentally eliminated
between two resonators, one approximately twice the length
of the other [5].)

The generality of the method as given in Section II-B,
however, extends further in that it establishes semiquanti-
tative correction procedures applicable to other
launcher/resonator configurations. One such is the ring
resonator (Fig. 9(b)), which is frequently employed in
dispersion and other measurements. In this device we may
regard the feed microstrip as launching a surface wave of the
type considered in (41) into the side of the ring. This
introduces a longitudinal H component into the microstrip-
line of which the resonant ring is comprised, while for wide
coupling gaps E is not greatly perturbed. From Table I we
would then anticipate a small upward shift in w, whose exact
magnitude would depend upon the linewidths, ring
diameter, and so on.

IV. WAVEGUIDE-TYPE CAVITIES

Cavities of this type have been used mainly in an effort to
measure the substrate permittivity directly [1}-[4] and, to a
lesser extent, the temperature coefficient of permittivity [6].
Both wholly (Fig. 1(b)) and partially (Fig. 1(a)) metallized
resonators have been investigated.

A. Qq-Associated Corrections

For all-over metallization, Q, (= Q;) values upwards of
250 normally are measured. For the open-edged resonators
used in [1] and [3], unloaded Q values of Q, ~ 80 and over
have been obtained, so that, as in the microstrip resonator,
0, is dominated by Q,, except that here Q,, arises from
energy lost by radiation into free space [24] instead of
surface waves. Provided that the radiated waves introduce
no phase shift into the fields existing at the walls S, however,
the result that there is no first-order Q-associated frequency
shift will stand. Thus, regardless of whether the waveguide-
type cavities have entirely electric walls or mixed boundary
conditions, the Q, is at least as high as that in microstrip
resonators. Thus its neglect can be expected to lead to an
error dg/s < +0.4 percent. In the experiments of [3] this is
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about one order of magnitude less than the largesterror due
to coupling perturbations. We therefore consider these next.

B. Reactive-Only Perturbations

In Fig. 10 we re-present the main results from [3], which
show (in Fig. 10(b)) the experimental points averaged over
15 substrate samples. All of the modes indicated were excited
in every sample. The open data points were obtained from
transmission measurements on cavities with magnetic
sidewalls, as in Fig. 1(a) with input/output coupling at
diagonally opposite corners and the solid points from
transmission measurements on resonators of the kind
shown in Fig. 1(b), but with excitation via a broad-wall hole.
In all cases the criterion for resonance was taken as the
frequency of maximum transmission. The scatter in points is
between 1 and 4 percent. We reexamine this data in the face
of the criticism raised by Owens et al. [13].

From Section IV-A it is clear that Q ~associated perturba-
tions do not account for the scatter (6¢/e < +0.4 percent).
Similarly, from Section II-B it is equally clear that fringing
does not account for the scatter either (Je/e ~ +0.64
percent, independently of mode). (It should be remarked
here that fringing is less severe than in microstrip resonators
because the fields are more tightly bound to the cavity—
there is no dielectric beyond the metallization.) We are
therefore left with coupling errors.

Fig. 10(a) shows the theoretical scatter in points obtained
by applying the methods given in Section II-B based upon
the following premises: in the closed-wall resonators the H
field at the broad wallis caused to loop by the feed linecinto a
volume Az, which is positive, while the electric field is
essentially undisturbed; in the open-edged resonators the
magnetic field at the corners (see Fig. 5) is largely un-
disturbed, while the E field is drawn out from a volume Ar,,,
in the resonator corners, which is therefore negative. Except
for the (n,0) modes, which were explained adequately in [3],
the relative placement of the error points is semiquantita-
tively correct. In this particular set of measurements, there-
fore, where the coupling was purposely tight enough to
access all the modes with adequate sensitivity from the
Hewlett Packard 8410A/8740A network analyzer used, the
error was dominated by coupling perturbations. All other
possible sources of error (Q and fringing) were consequently
discarded in the analysis, which is the particular point of
contention raised by Owens et al. [13].

The results of Fig. 10 do, in fact, bear reexamination, but
not for these reasons. The principal assumption made in [3],
and that which could attract the greatest criticism, was that
the coupling volume At was taken to be the same for both
open-edged and closed-edged resonators, ie., At, = Az, It
is this assumption which can be challenged.

By careful comparison of (a) and (b) of Fig. 10, it can be
seen that the scatter in experimental points for closed-wall
resonators (the solid data) is slightly less than in the
corresponding theoretical points, where equal Ar’s are
assumed: they would have been more comparable had a
smaller value of At been used in predicting the upper half of
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Fig. 10. Mode errors in &, (from [3]). (a) Theoretical. (b) Experimental (averaged over 15 samples).

~ TABLE III

Revised permittivity values for

SAPPHIRE (Crystalline A1203)

9.42(4) {base plane)

11.59(3) (c - axis)

the theoretical diagram than the lower half,i.e., Az, < At,,. If
this is done it compresses all the solid points in Fig. 10(a)
down toward the horizontal (zero) axis. The last step is then
to compare the positions of the horizontal axes in (a) and (b)
of Fig. 10; this shows that the zero error line in Fig. 10(b)is
too low; it must be weighted upwards toward the closed-
edge data set by 0.8-1 percent. Thus the previously pub-
lished values for ¢ [3] must be increased by circa 0.9 percent.
Applying this correction per se yields the revised values
given here in Table III.

These figures now agree more closely with those of
Fontanella et al. [25], Loewenstein et al. [26], and those
adopted by Owens et al. [13]. The following error bounds
apply: &, + 0.1 percent, —1.6 percent; & + 0.2 percent,
— 1.5 percent. They include the uncertainty in the correction
procedure for couplingerrors, the effects of 0 ,and fringing, a
+10°C change in temperature, and anisotropy, all as treated
explicitly in this paper, together with instrument calibration
error, an allowance for other (secondary) reactances asso-
ciated with the coupling structures, mismatches in the input

and output lines to the cavity, and, lastly, the precision of the
measurement.’

Finally, we make the rather obvious remark that coupling
errors can be reduced by firstly using a source/detector
system allowing a higher insertion loss, and secondly
contenting ourselves with exciting only those modes which
couple most strongly, both of which enable the coupling
volume to be decreased. Such techniques have been
employed by Lenzing [2].

V. CONCLUSIONS

An MIC resonator with mixed boundary conditions, such
as a microstrip resonator, loses energy at both imperfect
electric and magnetic walls. There is a first-order shift in the
resonant mode frequencies associated with the Q of the
imperfect electric (metal) walls alone; magnetic walls intro-
duce only a second-order shift. The latter may, however,
dominate the unloaded Q,Q,.

It has been shown that the effects of Q and reactive
perturbations arising from fringing and coupling structures
are the principal sources of error in resonance measure-
ments for ¢, Or & Such reactive effects may be treated

5 1t should be noted that, depending upon the criterion used to define
resonance, different measured frequencies for any particular resonant
mode will result if, firstly, reflection (or impedance) measurements are
made as opposed to transmission measurements and, secondly, where-
abouts in the feed line the measurement plane is chosen in the case of the
reflection method. The author is grateful to one of the referees for sug-
gesting that this point should be made.
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semiquantitatively by applying Slater’s perturbation
theorem over the region where the field is perturbed. These
procedures yield the following revised values for the crystal
permittivity of sapphire (monocrystalline Al,0,) in the
microwave region; ¢ (parallel to the ¢ axis) = 11.6 (40.2
percent, — 1.5 percent); &, (base plane) = 9.4 (+0.1 percent,
— 1.6 percent).

APPENDIX A
RESUME OF NOMENCLATURE [8§]

Any general field E inside a cavity is assumed to be
expanded as a sum of solenoidal functions E, and irrota-
tional functions F, where g refers to the ath normal mode.
Similarly, H is assumed to be expanded in terms of solenoi-
dal functions H,. Thus the E;’s and H,’s satisfy

VxH=kE, VxE,=kH, (A1)

where k, = w,/pe is the propagation constant associated
with the ath mode, w,. The functions are orthogonal, and are
normalized as follows:

j H,fdv:f E2dv=1
v v

where V is the volume of the cavity. Thus if we multiply the
following expansion by E, and integrate over V:

E=Y e,E,+) f,F,

we obtain the coefficients e, as {y E - E, dv etc. If electric
walls are defined as surfaces S on which

nx E,=0

and magnetic walls as surfaces S’ on which
nx H,=0

then V x E and V x H expand directly to

VxE=ZH,,(k,,J E-E,,dv+j (an)'Hada)
a Vv S

VxH=ZEa(kaf H~H,,dv+f (an)'Eada)
a |4 s

where n is a normal directed out of V (ie., into S,S').

By substituting these expansions into Maxwell’s curl
equations and equating coefficients, (7) and (8) of the text are
obtained. These last two relations may be further combined
to give

4 ,
eygt—szE-Eadv+k,, jVE-E,,du

=_”%(jVJ-Eadv—f (an)-E,,da)

S

—k, [ (nx E)- H, da (A2)

which is required for the derivation in Appendix' B.
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volume change At /original surface 8': (n x Ha) =0

at this surface.

deformed surface s"

arbitrary shaped cavity of
Yolume V.
Fig. 11

APPENDIX B
SLATER’S PERTURBATION THEOREM FOR A MAGNETIC WALL

(This follows closely Slater’s derivation for electric walls
(8],

Consider a cavity with some of its walls magnetic, and
consider also part of one of these walls to be pushed-in
slightly; see Fig. 11. Since the electric field within Az is now
zero, there is a discontinuity in the tangential component of
E at the perturbed wall. This corresponds to a (fictitious)
surface current over S” given by (n x E), so we must
consequently include a contribution

—f (nx E)- H, da
S
to the right-hand side of (A2).

For small deformations, the perturbed field E will very
closely approximate the original field—which we assume to
be the ath normal mode—multiplied by its coefficient
j'y E- E, dv; ie, for the ath normal mode (or resonance)
when the boundary is perturbed

E~E, j E-E,dv
1 4
and hence

—J- (nx E)- H, da

S

—J.S”(ana)-HadaLE-Eadv

)

S

(B1)

n'(EaxH,,)daJ E- E, dv.
14

In order to simplify the surface integral, consider
V-(E,x H)=H, (Vx E)—E,- (V x H)
= k(H: — E2)
by (A1). Integrating both sides and applying the divergence

theorem gives

j V~(Eax11,,)du=k,,j (H? — E?) dv
At

At

=—f (E, x H,)- nda
S+ S0

where the minus sign on the right-hand side arises because n
is directed into At. The surface integral may be split into two
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parts: one over S’ and one over S”. We may rewrite the
integrand as —n- (E, x H,)=E, - (n x H,) =0 (see the
figure and the boundary conditions for §’ stated in Appendix
A), so we are left with

—j n- (E, H,,)da=k,,j (H? — E2) do.
S Az

We now substitute (B2) into (B1) and add this term into
the right-hand side of (A2) under the assumptions:

(B2)

i) all other terms on the right-hand side of (A2) are zero;
ii) [y E - E, dv = coefficient of E,, varies as ¢/**; » = real.

This gives
—w?ue + k2 = k2 I (H2 — E?) dv

At
or, since k2 = w2ue where w, is the frequency of the ath
(unperturbed) normal mode,
®? — w?
T = | (E2-H})d B3
603 jAr ( ¢ a) Y ( )
for, recall, a decrease in volume Ar.

The right-hand side is of opposite sign to that which
results when an electric side wall is pushed in [8]. That thisis
correct may be checked against the expectation that, in
either cavity type, w should decrease for a small increase in

resonator dimensions (refer to Table I of the text).
APPENDIX C
USE OF THE NOMOGRAM (FIG. 8)

i) Determine an approximate value for (e./e,) at the
particular (w/x,) and frequency of interest. Example:

Eoer = 6.8 £=98 w/x, = 1.

ii) Draw a line ( ) connecting the
(£¢r¢ /2,) value on the left-hand scales with the (w/x ;) value on
the right-hand scales. Let this line intersect the “pivot line”
at point 0.

ili) Draw a line (- - - - - ) connecting point 0 with the
mode number m on the right-hand scales, and extrapolate to
cut the Q, axis. Example:

m=35 giving Q. =576

per end, or 288 if there is loss from both ends of the resonator.
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